

This article was downloaded by: [Tomsk State University of Control Systems and Radio]
On: 20 February 2013, At: 12:40
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954
Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH,
UK

Molecular Crystals and Liquid Crystals

Publication details, including instructions for authors and subscription information:
<http://www.tandfonline.com/loi/gmcl16>

Tunneling Spectra in $(\text{TMTSF})_2\text{ClO}_4$, /I/Pb Junctions

A. Fournel ^a, B. Oujia ^a & J. P. Sorbier ^a

^a Département Electronique, Université de Provence, 13397, MARSEILLE CEDEX, 13

Version of record first published: 17 Oct 2011.

To cite this article: A. Fournel , B. Oujia & J. P. Sorbier (1985): Tunneling Spectra in $(\text{TMTSF})_2\text{ClO}_4$, /I/Pb Junctions, Molecular Crystals and Liquid Crystals, 119:1, 37-40

To link to this article: <http://dx.doi.org/10.1080/00268948508075130>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.tandfonline.com/page/terms-and-conditions>

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages

whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Tunneling Spectra in $(\text{TMTSF})_2 \text{ClO}_4$ /I/Pb Junctions

A. FOURNEL, B. OUJIA, J.P. SORBIER.

Département d'Electronique, Université de Provence
13397 MARSEILLE CEDEX 13

All energy gap or partial condensation (pseudogap) which spread on a small energy range, around Fermi level, for an unknown material X, should be studied at low temperature by using tunneling junction as X/I/Pb.

Unlike experimental tunneling effect it present very often various anomalous zero bias, that is why we use Pb as conterelectrode. When lead is in a superconductive state we postulated that if tunneling spectra exhibits clearly the superconductive gap, and the phonon electron interactions we have a good tunneling device.

We show 3 cases of tunneling spectra, respectively by figures 1, 2 and 3, obtained with $(\text{TMTSF})_2 \text{ClO}_4$ /I/Pb junctions. With our precedent criterion, only the case described by figure 3 is correct because superconductive gap is clearly observed. We may add that the ratio of dV/dI ($V=0$) by dV/dI (high energy) is lightly higher than 6 at 4.2 K (8 theoretically). We can observe by a decreasing of temperature from 4.2 K to 1.2 K a broadening of lead superconductive gap and figure 4 shows unambiguously the phonon-electrons interactions. This broadening effect is not observed in figure 1 and we may add that phonon-electron is not observed and that the value of the gap is only the gap of lead. In figure 2, we measure a superconductive gap larger than figure 1, the phonon-electron interaction is not very good but visible and when a magnetic field is applied a structure subsists. In figure 3 by applying a magnetic field a structure stay in place but this structure depends lightly on magnetic field (see insert in figure 3).

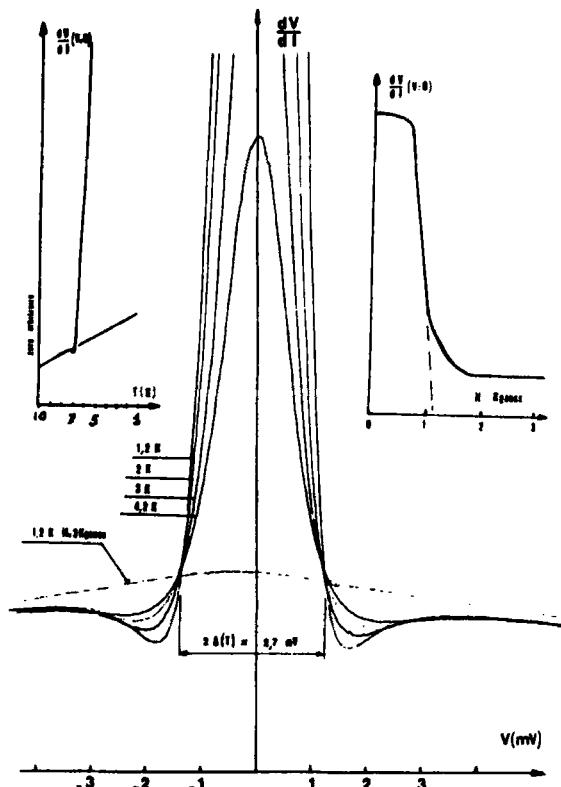


Figure 1 : case 1 is illustrated by these curves. $(TMTSF)_2ClO_4$ have a metal comportment. The right insert shows that with a magnetic field up to 1.5 Kgauss, all the lead superconductivity is destroyed.

The structure observed in figure 3 could have for reason a partial condensation created by the existence of superconductive fluctuatives domains (1). At 1.2 K this condensation would be important (25 % according to our curves). These results are in contradiction with those of ISHIGURO (see proceedings of this

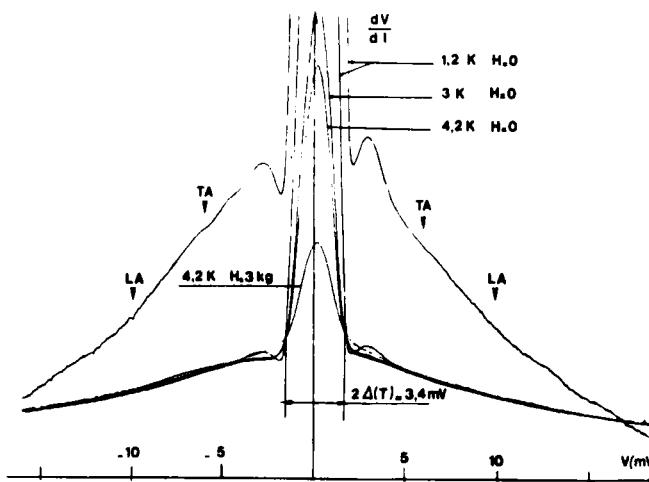
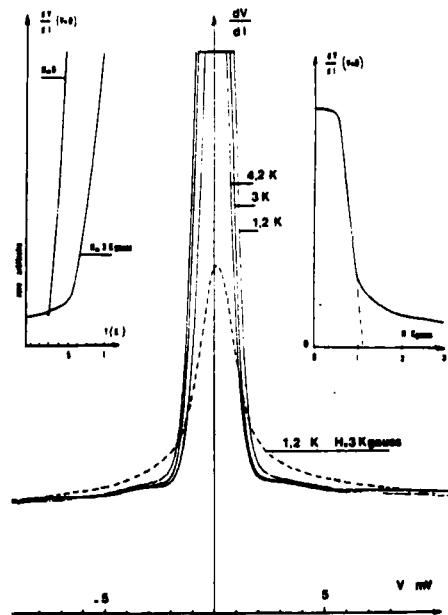



Figure 2 : Case 2. Phonon-electron interactions are lightly visible. TA and LA indicate the energies of lead phonons measured with AsGa/Pb junctions.

Figure 3 :

The broadening of lead gap when temperature is decreasing is clearly observed and the singularities of adges gap are rubbed.

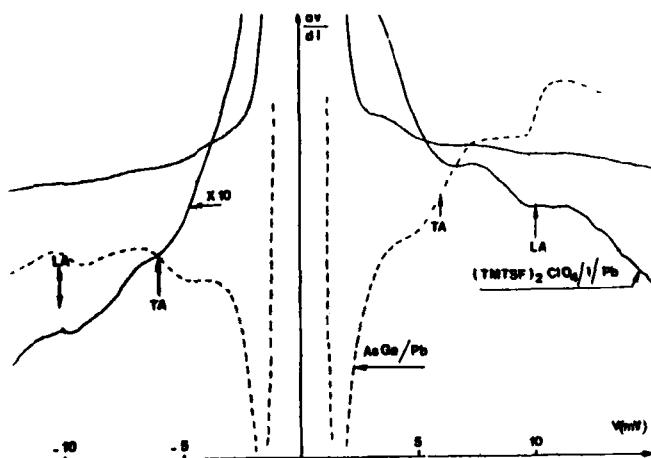


Figure 4 : Case 3. The phonon-electron interactions are clearly observed and compared with the one obtained in AsGa/Pb junctions.

conference) but their spectra obtained with $(TMTSF)_2ClO_4/I/Pb$ junctions don't show the lead phonon-electron interaction ; the fine effects caused by $(TMTSF)_2ClO_4$ could be hidden.

More details of our work are given in a paper that will be published in *Journal de Physique Lettres*.

(1) D. JEROME. *Proceedings of the NATO Advanced Study Institute, Cambridge, U.K. 1983. Physics and Chemistry of Electrons and Ions in Condensed Matter*, D. REIDEL Publ. Comp.